
High order numerical simulation
of the underdamped Langevin diffusion

James Foster

University of Bath
(joint with Terry Lyons and Harald Oberhauser)



Outline

1 Introduction

2 Deriving an ODE approximation of ULD

3 Error analysis of the ODE approximation

4 Deriving an SDE approximation of ULD

5 Conclusion

6 References

James Foster (University of Bath) Numerical simulation of ULD 20 July 2023 1 / 40



What is the underdamped Langevin diffusion?

The underdamped Langevin diffusion (ULD) is a model for molecular
dynamics and is given by the stochastic differential equation (SDE):

dxt = vt dt, (1)

dvt = −γvt dt− u∇f(xt)dt+
√
2γudWt ,

where
• x, v ∈ Rd will represent the position andmomentum of a particle
• f : Rd → R is a scalar potential that the particle moves around in
• γ > 0 is the friction coefficient
• u > 0 is the gradient coefficient (often just set to u = 1)
• W = {Wt}t≥0 is a standard d-dimensional Brownian motion

dWt ∼ N (0, Id dt)
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Applications of the underdamped Langevin diffusion
“ULD = Newton’s second law + frictional forces + stochastic forces”

dxt = vt dt,

dvt = −γvt dt︸ ︷︷ ︸
friction

− u∇f(xt)dt︸ ︷︷ ︸
gradient of the
potential / target

+ σ dWt︸ ︷︷ ︸
noise

,

Under mild assumptions on f, the SDE admits a unique strong solution
that is ergodic with stationary distribution π(x, v) ∝ e− f(x)+ 1

2u∥v∥
2 [1].

In addition to being a fundamental model in statistical mechanics [2],
ULD has recently been applied to sampling problems in data science
as simulating ULD allows one to generate samples from π(x) ∝ e− f(x).

(technically, samples are “close” to π in an optimal transport sense [3])

In practice, (1) cannot be solved exactly, so we must approximate ULD.
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Langevin MCMC as part of a larger ecosystem

(NeurIPS 2018) (NeurIPS 2019) 
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A high order ODE-based approximation of ULD

One strategy for discretizing the underdamped Langevin diffusion is

1 Replace the Brownian motionW by a piecewise linear path “W.

2 Along each piece of “W, we approximate the SDE (1) using the ODE:

dx̂t = v̂t dt, (2)

dv̂t = −γv̂t dt− u∇f(x̂t)dt+ σ d“Wt , (3)

where σ :=
√
2γu.

3 In each step, we discretize (2) and (3) using a suitable ODE solver.

Note that we will use the notation Ws,t := Wt −Ws and “Ws,t := “Wt −“Ws .
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The stochastic Taylor expansion of ULD
When f is three times differentiable, ULD admits the Taylor expansion:(
xt
vt

)
=

(
xs
vs

)
+

(
vs

−γvs − u∇f
(
xs
)) (t− s) +

(
0

σ

)
Ws,t (4)

+
(
· · ·
) ∫ t

s
Ws,r dr+

(
· · ·
)
(t− s)2 +

(
· · ·
)
(t− s)3

+
(
· · ·
) ∫ t

s

∫ r

s
Ws,v dv dr+

(
· · ·
) ∫ t

s

∫ r

s

∫ v

s
Ws,w dwdvdr

+
(
· · ·
) ∫ t

s

∫ u

s

∫ v

s
(r− s)dWr dv du+ Rs,t ,

where
(
· · ·
)
are terms involving the vector fields and their derivatives.

Theorem (Stochastic Taylor expansion, Theorem 5.5.1 of [10])
If E
[
∥∇f(xs)∥42

]
< ∞, E

[
∥vs∥82

]
< ∞ and∇kf is Lipschitz continuous for

k = 1, 2, 3 then E
[
∥Rs,t∥22

] 1
2 ∼ O

(
(t− s)4

)
.
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The Taylor expansion of the ODE approximation
When f is three times differentiable, (2, 3) admits the Taylor expansion:(
x̂t
v̂t

)
=

(
x̂s
v̂s

)
+

(
v̂s

−γv̂s − u∇f
(
x̂s
)) (t− s) +

(
0

σ

)“Ws,t (5)

+
(
· · ·
) ∫ t

s
“Ws,r dr+

(
· · ·
)
(t− s)2 +

(
· · ·
)
(t− s)3

+
(
· · ·
) ∫ t

s

∫ r

s
“Ws,v dv dr+

(
· · ·
) ∫ t

s

∫ r

s

∫ v

s
“Ws,w dwdvdr

+
(
· · ·
) ∫ t

s

∫ u

s

∫ v

s
(r− s)d“Wr dv du+ R̂s,t ,

where
(
· · ·
)
are the same terms appearing in the expansion (4) of ULD.

Remark
We want to construct “W to match certain iterated time integrals ofW.
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Piecewise linear discretization of Brownian motion

Based on these expansions, we want a piecewise linear path “W so that“Ws,t = Ws,t , (6)∫ t

s
“Ws,r dr =

∫ t

s
Ws,r dr, (7)∫ t

s

∫ r

s
“Ws,v dv dr =

∫ t

s

∫ r

s
Ws,v dv dr. (8)
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Piecewise linear discretization of Brownian motion
To reduce computational cost, we construct “W using “vertical pieces”!

Along vertical pieces, dt = 0 so the ODE becomes dx̂t = 0,dv̂t = σd“Wt .
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Generating iterated time integrals of Brownian motion

Let {tn}n≥0 be a sequence of times with t0 = 0 and tn+1 > tn . We define

hn := tn+1 − tn ,

Wn := Wtn+1 −Wtn ,

Hn :=
1

hn

∫ tn+1

tn

((
Wt −Wtn

)
− t− tn

hn
Wn

)
dt,

Kn :=
1

h2n

∫ tn+1

tn

(
1

2
hn −

(
t− tn

))((
Wt −Wtn

)
− t− tn

hn
Wn

)
dt.

Lemma (Direct consequence of Theorem 2.2 in [11])
The random vectors Wn , Hn , Kn are independent and distributed as

Wn ∼ N
(
0, Id hn

)
, Hn ∼ N

(
0,

1

12
Id hn

)
, Kn ∼ N

(
0,

1

720
Id hn

)
.
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Generating iterated time integrals of Brownian motion

 

∝ 𝐻𝑛 
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Generating iterated time integrals of Brownian motion

 

∝ 𝐾𝑛 
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Generating a piecewise linear approximation ofW

It is straightforward to obtain the iterated integrals from (Wn ,Hn ,Kn).

Lemma (Iterated integrals and polynomial coefficients ofW )∫ tn+1

tn
Wtn,t dt =

1

2
hnWn + hnHn ,∫ tn+1

tn

∫ t

tn
Wtn,s ds dt =

1

6
h2nWn +

1

2
h2nHn + h2nKn .

Definition (Piecewise linear discretization of Brownian motion)
We define “W on each [tn, tn+1] as the piecewise linear path connecting(
tn,Wtn

)
,
(
tn,Wtn + Hn + 6Kn

)
,
(
tn+1,Wtn+1 + Hn − 6Kn

)
,
(
tn+1,Wtn+1

)
in said order.

From the lemma, we can check that “W satisfies properties (6), (7), (8).
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An ODE method for underdamped Langevin dynamics

Definition (Shifted ODE method for ULD [12])
We define a numerical solution {(x̃n , ṽn)} by setting (x̃0 , ṽ0) := (x0 , v0)
and for each n ≥ 0, defining (x̃n+1 , ṽn+1) as(

x̃n+1

ṽn+1

)
:=

(
xn1
vn1

)
−
(
Hn − 6Kn

)(0
σ

)
where {(xnt , vnt )}t∈ [0,1] solves the following Langevin-type ODE,

d
dt

(
xn
vn
)

=

(
vn

−γvn − u∇f
(
xn
))hn + (Wn − 12Kn

)(0
σ

)
, (9)

with initial condition(
xn0
vn0

)
:=

(
x̃n
ṽn

)
+
(
Hn + 6Kn

)(0
σ

)
.
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Error analysis of the ODE approximation

Theorem (Convergence of shifted ODE with fixed step sizes [12])
Suppose that the function f : Rd → R is m-strongly convex,

f(y) ≥ f(x) +
〈
∇f(x), y− x

〉
+

1

2
m∥x− y∥22 , (10)

and twice continuously differentiable with an M-Lipschitz continuous
gradient∇f,

∥∇f(x)−∇f(y)∥2 ≤ M∥x− y∥2 , (11)

for all x, y ∈ Rd.

Let {(xt, vt)} and {(x̃n , ṽn)} be defined from the same Brownian motion,
(x0, v0) ∼ π and ṽ0 = v0 ∼ N (0, uId). Then there exists c0, c1 > 0 so that

∥ x̃n − xtn∥L2(P) ≤ c0 e−nαh∥ x̃0 − x0∥L2(P) + c1
√
dh

3
2 , (12)
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Error analysis of the ODE approximation
Theorem (Convergence of the shifted ODE method (continued))
where for a random vector X and p ≥ 1, the norm ∥X∥Lp(P) is defined as

∥X∥Lp(P) := E
[
∥X∥p2

] 1
p ,

and the rate of contraction α is given by

α =

(
γ2 − uM

)
∨ um

γ
.

In addition, if ∇2f is Lipschitz continuous then there exists c2 > 0 so that

∥ x̃n − xtn∥L2(P) ≤ c0 e−nαh∥ x̃0 − x0∥L2(P) + c2dh
5
2 . (13)

If ∇2f and ∇3f are Lipschitz continuous then there exists c3 > 0 so that

∥ x̃n − xtn∥L2(P) ≤ c0 e−
1
2
nαh∥ x̃0 − x0∥L2(P) + c3d

3
2 h3. (14)
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Error analysis of the ODE approximation

Sketch Proof.
Firstly, we use a change of variable to rewrite the ODE approximation as(

x̃n+1

ṽn+1

)
:=

(
x̂ntn+1

v̂ntn+1

)
+ 12Kn

(
0
σ

)
,

where
{(
x̂nt , v̂nt

)}
t∈ [tn,tn+1]

solves the following Langevin-type ODE,

d
dt

(
x̂n

v̂n

)
=

(
v̂n + σ

(
Hn + 6Kn

)
−γ
(
v̂n + σ

(
Hn + 6Kn

))
− u∇f

(
x̂n
))hn +

Wn − 12Kn
hn

(
0
σ

)
,

with initial condition
(
x̂ntn , v̂

n
tn
)
:=
(
x̃n , ṽn

)
.

This will help us establish local error estimates at times within [tn, tn+1].
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Error analysis of the ODE approximation
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) 

Local error 

2-Wasserstein 
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Error analysis of the ODE approximation

Sketch Proof. (Global bounds on the diffusion process)
• Since (x0, v0) ∼ π we have (xt, vt) ∼ π for all t ≥ 0. In particular,

vt ∼ N
(
0, uId

)
, (15)

and

E
[
∥∇f

(
xt
)
∥22
]
≤ Md, (16)

E
[
∥∇f

(
xt
)
∥42
]
≤ 3M2d2, (17)

for all t ≥ 0 (see Lemma 2 in [13] and Theorem C.11 in [12]).

• Since we start the ODE approximation from
(
xtn , vtn

)
, we can use

the above to estimate errors without imposing boundedness on∇f.

• We note that the strong convexity assumption is not required here.
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Error analysis of the ODE approximation

Sketch Proof. (Crude local error estimates)
• We also define (

x ′
n+1

v ′n+1

)
:=

(Ûxntn+1Ûvntn+1

)
+ 12Kn

(
0
σ

)
,

where
{(Ûxnt ,Ûvnt )}t∈ [tn,tn+1]

is the solution to the Langevin-type ODE
used previously, but with initial condition

(Ûxntn ,Ûvntn) := (xtn , vtn).

• Using just the Lipschitz regularity of∇f, we can obtain the estimates

∥xt − Ûxnt ∥Lp(P) ≤ C1(p)
√
d (hn)

1
2 (t− tn), (18)

∥vt − Ûvnt ∥Lp(P) ≤ C2(p)
√
d (t− tn)

1
2 , (19)

for p ∈ {2, 4, 8} and t ∈ [tn , tn+1].
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Error analysis of the ODE approximation

Sketch Proof. (Local error estimates)
• Now that we have Lp(P) bounds for the SDE and ODE solutions,
we can Taylor expand

{(
xnt , vnt

)}
t∈ [tn,tn+1]

and
{(Ûxnt ,Ûvnt )}t∈ [tn,tn+1]

and estimate the remainder terms.

• Using the Lipschitz regularity of ∇f, we can show, for p ∈ {2, 4, 8},

∥xtn+1 − x ′
n+1∥Lp(P) ≤ C3(p)

√
d (hn)

7
2 , (20)

∥vtn+1 − v ′n+1∥Lp(P) ≤ C4(p)
√
d (hn)

5
2 . (21)

• In addition, from the Lipschitz regularity of∇f and∇2f, we have

∥vtn+1 − v ′n+1∥L2(P) ≤ C5d(hn)
7
2 . (22)

• Again, we note that the strong convexity of f is not required here.
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Error analysis of the ODE approximation
Theorem (Exponential contractivity of the ODE approximation)
Suppose that f is m-strongly convex and∇f is M-Lipschitz continuous.
Let λ ∈ [0, 12γ) and define η := γ − λ. Then for n ≥ 0, we have∥∥∥∥∥

((
λx̃n+1 + ṽn+1

)
−
(
λx ′n+1 + v ′n+1

)(
η x̃n+1 + ṽn+1

)
−
(
ηx ′

n+1 + v ′n+1

))∥∥∥∥∥
2

≤ e−αhn

∥∥∥∥∥
((

λx̃n + ṽn
)
−
(
λxtn + vtn

)(
η x̃n + ṽn

)
−
(
ηxtn + vtn

))∥∥∥∥∥
2

,

almost surely, where

α =

(
η2 − uM

)
∨
(
um− λ2

)
γ − 2λ

.

Proof
Follows by essentially the same argument applied to ULD in [14].
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Convergence in the 2-Wasserstein metric

Numerical Assumptions on the Number of steps to achieve

method strongly convex f an error ofW2( x̃n, e−f ) ≤ ε

Shifted ODE Lipschitz gradient O
( 3√

d/ε
2
3

)
[12] + Lipschitz∇2f O

(
d

2
5 /ε

2
5

)
+ Lipschitz∇3f O

(√
d/ε

1
3

)
OBABO splitting Lipschitz gradient O

(√
d/ε

)
[15, 16] + Lipschitz∇2f O

(√
d/

√
ε
)

Randomized Lipschitz gradient O
( 3√

d/ε
2
3

)
midpoint [17, 18]

Left-point Lipschitz gradient O
(√

d/ε
)

method [3]
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Discretization of the shifted ODE (SORT method)
Definition (Shifted ODE with Runge-Kutta Three)

V(1)
n := Vn + σ

(
Hn + 6Kn

)
,

X(1)
n := Xn +

(
1− e−

1
2
γhn

γ

)
V(1)
n −

(
e−

1
2
γhn + 1

2γhn − 1

γ2

)
u∇f

(
Xn
)

+ σ

(
e−

1
2
γhn + 1

2γhn − 1

γ2hn

)(
Wn − 12Kn

)
,

Xn+1 := Xn +
(
1− e−γhn

γ

)
V(1)
n + σ

(
e−γhn + γhn − 1

γ2hn

)(
Wn − 12Kn

)
−
(
e−γhn + γhn − 1

γ2

)(
1

3
u∇f

(
Xn
)
+

2

3
u∇f

(
X(1)
n
))

,

Vn+1 := e−γhnV(1)
n + σ

(
1− e−γhn

γhn

)(
Wn − 12Kn

)
− σ

(
Hn − 6Kn

)
− uhn

(
1

6
e−γhn∇f

(
Xn
)
+

2

3
e−

1
2
γhn∇f

(
X(1)
n
)
+

1

6
∇f
(
Xn+1

))
.
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A second order SDE approximation of ULD

1. Evaluate∇f at Xn

2. Compute Xn+1 by solving the following SDE on [tn , tn+1]:

dxt = vt dt,
dvt = −λvt dt− u∇f

(
Xn
)
dt+ σdWt ,

with initial value
(
Xn ,Vn

)
. Computing Vn+1 gives the left-point method.

3. Evaluate∇f at Xn+1

4. Compute Vn+1 by solving the following SDE on [tn , tn+1]:

dvt = −λvt dt− u
(
∇f
(
Xn
)
+
t− tn
hn

(
f
(
Xn+1

)
− f
(
Xn
)))

dt+ σdWt .

with initial value Vn.
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A second order SDE approximation of ULD

Definition (ULD discretized by linearly interpolating gradients)

Xn+1 := Xn +
(1− e−γhn

γ

)
Vn −

(e−γhn + γhn − 1

γ2

)
u∇f

(
Xn
)

+ σ

∫ tn+1

tn

∫ t

tn
e−γ(t−s)dWsdt,

Vn+1 := e−γhnVn −
(1− (1 + γhn)e−γhn

γ2hn

)
u∇f

(
Xn
)

−
(e−γhn + γhn − 1

γ2hn

)
u∇f

(
Xn+1

)
+ σ

∫ tn+1

tn
e−γ(tn+1−t)dWt .

Although we only expect a O(h2) convergence rate, this method has the
advantage that it only uses one additional gradient evaluation per step.
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Numerical experiment (logistic regression)

• The dataset is m pairs of labels yi ∈ {−1, 1} and features xi ∈ Rd.
• Target density π(θ) ∝ exp(−f(θ)) comes from a logistic regression:

f(θ) =
δ

2
∥θ∥22 +

m∑
i=1

log
(
1 + exp(−yixTi θ)

)
,

where δ is a regularization parameter which we will set to δ = 0.1.

• German credit data from UCI repository [19] (m = 1000, d = 49).
• Estimate L2(P) error by simulating chains with step sizes h and 1

2h:

SN,n :=

Ã
1

n

n∑
i=1

∥∥−→θ h
N,i −

−→
θ

1
2
h

N,i
∥∥2
2
,

where we use a fixed time horizon T = 1000 with step size h = T
N .
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Numerical experiment (logistic regression)

  

Figure: SN,n computed with n = 100 sample paths using a fixed step size.
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Conclusion

• Shifted ODE method
– First to achieve third order convergence without derivatives of∇f
– Scales sublinearly with the dimension d
– Allows one to use modern ODE solvers
– No problem with adaptive step sizes

• SORT method (Shifted ODE with Runga-Kutta Three)
– Practical (two additional gradient evaluations per step)
– Can empirically demonstrate third order convergence
– Difficult to analyse!

• Interpolating between gradients
– Very practical (one additional gradient evaluation per step)
– Should be possible to establish second order convergence
– Natural candidate for noisy gradients
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Thank you
for your attention!

and our preprint can be found at:

J. Foster, T. Lyons and H. Oberhauser, The shifted ODE method for
underdamped Langevin MCMC, arxiv.org/abs/2101.03446, 2021.
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